Cohen-Macaulay Rees algebras of ideals having analytic deviation two

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Cohen–macaulay Ideals of Small Second Analytic Deviation

We characterize the strongly Cohen–Macaulay ideals of second analytic deviation one in terms of depth properties of the powers of the ideal in the ‘standard range.’ This provides an explanation of the behaviour of certain ideals that have appeared in the literature.

متن کامل

Cohen-Macaulay Rees Algebras and Their Specialization

an isomorphism? These questions have interest partly because if S and .S’(J, S) are Cohen-Macaulay, then so is gr, S := S/J@ J/J’... [ 16 1 and under these hypotheses if N is perfect and R @ .S(J, S) = .$(I, R), then R and .7(1. R) are Cohen-Macaulay too. Thus, gr,R is Cohen-Macaulay, and its torsion freeness and normality, for exmple, can be characterized in terms of analytic spreads, as in [ ...

متن کامل

Grothendieck-serre Formula and Bigraded Cohen-macaulay Rees Algebras

The Grothendieck-Serre formula for the difference between the Hilbert function and Hilbert polynomial of a graded algebra is generalized for bigraded standard algebras. This is used to get a similar formula for the difference between the Bhattacharya function and Bhattacharya polynomial of two m-primary ideals I and J in a local ring (A, m) in terms of local cohomology modules of Rees algebras ...

متن کامل

Cohen-macaulayness of Rees Algebras of Diagonal Ideals

Given two determinantal rings over a field k, we consider the Rees algebra of the diagonal ideal, the kernel of the multiplication map. The special fiber ring of the diagonal ideal is the homogeneous coordinate ring of the secant variety. When the Rees algebra and the symmetric algebra coincide, we show that the Rees algebra is CohenMacaulay.

متن کامل

Initial Algebras of Determinantal Rings, Cohen–Macaulay and Ulrich Ideals

Let K be a field and X an m×n matrix of indeterminates over K. Let K[X] denote the polynomial ring generated by all the indeterminates Xij . For a given positive integer r ≤ min{m, n}, we consider the determinantal ideal Ir+1 = Ir+1(X) generated by all r + 1 minors of X if r < min{m, n} and Ir+1 = (0) otherwise. Let Rr+1 = Rr+1(X) be the determinantal ring K[X]/Ir+1. Determinantal ideals and ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1994

ISSN: 0040-8735

DOI: 10.2748/tmj/1178225681